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1 Background & Motivation

*HAE AL formal definitions can be found together in the last section™***

1.1 What the Stalnaker-Lewis Theory Can’t Explain

e Tichy (1976:271) proposed the following discourse as a counterexample to

Stalnaker (1968) & Lewis (1973)’s theories of counterfactuals:
(1) a. Invariably, if it is raining, Jones wears his hat

If it is not raining, Jones wears his hat at random
Today, it is raining and so Jones is wearing his hat

/o o

his hat

e Given (la-c), (1d) is judged to be incoherent/false/bad
e Why is this a counterexample to the Stalnaker-Lewis theory?

But, even if it had not been raining, Jones would have been wearing

o According the the Stalnaker-Lewis theory a counterfactual is true in the
actual world w iff the consequent is true in every world in which the

antecedent is true and in other respects is maximally similar to w

o Given the constraints placed on the actual world w in (1), which are the

most w-simliar worlds where it is not raining?

o Tichy argues that the most w-similar worlds are ones where Jones is wear-

ing his hat, since, as (1c) says, Jones is wearing his hat in w

o But then Stalnaker-Lewis predict that (1d) is true and so (1) should be

fine!

o Note that this counterexample assumes that particular matters of fact are

taken into account when determining w-similarity

e Lewis (1979) responded with a system of weights that govern similarity
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1.1 What the Stalnaker-Lewis Theory Can’t Explain

e Among them was the following:

“It is of little or no importance to secure approximate similarity of par-
ticular fact.” (Lewis 1979:472)

e Assuming Lewis’ metric can be successfully implemented, this appears to
solve the problem with (1), since the counterexample relied on similarity
with respect to a particular fact

e Unfortunately for Lewis, there are examples which appear to require simi-
larity to depend on particular facts:*

(2) a. Jones always flips a coin before he opens the curtain to see what the

weather is like

b. If it’s not raining and the coin comes up heads, he wears his hat

c. If it’s not raining and the coin comes up tails, he doesn’t wear his
hat

d. Invariably, if it is raining he wears his hat

e. Today, the coin came up heads and it is raining, so Jones is wearing
his hat

f. But, even if it hadn’t been raining, Jones would have been wearing
his hat

e Given (2a-e), (2f) is judged to be acceptable
e But, given Lewis’ (1979) metric (2f) is predicted to be false!

o (2f)’s truth requires that the closest non-raining worlds be ones where
Jones is still wearing his hat, but it is a particular matter of fact that
Jones is wearing his hat. So it seems that particular matters of fact do
count towards similarity after all!

e There are simpler examples in the literature that illustrate this fact:
(3) If we had bought one more artichoke this morning, we would have had
one for everyone at dinner tonight (Sanford 1989: 173)
o> This example requires that we hold fixed the particular fact of how

many guests showed up for dinner tonight

(4) (Your friend invites you to bet heads on a fair coin-toss. You decline.
The coin is tossed and comes up heads.) See, if you had bet heads you
would have won! (Slote 1978: 27 fn33) 2

> This example requires that we hold fixed the particular fact that
the coin came up heads

1 Veltman (2005: 164) attributes this example to Frank Mulkens.

Slote (1978:27{n33) attributes a parallel example to the late philosopher Sydney
Morgenbesser.

2 Slote attributes this example to Sydney Morgenbesser.



1.2 What Went Wrong? Where are we Going?

1.2 What Went Wrong? Where are we Going?

e Veltman (2005) offers an alternative diagnosis of why (1d) is bad, while (2f)
is acceptable

e When we make the counterfactual assumption had it not rained, we don’t
keep assuming that Jones wore his hat, since Jones was wearing his hat
because it was raining

o When you make a counterfactual assumption of ¢, you not only suspend
your belief that =¢ but also any other beliefs that depended on —¢

e Veltman (2005: 164) puts it nicely:

Similarity of particular fact is important, but only for facts that do not de-
pend on other facts. Facts stand and fall together. In making a counterfactual
assumption, we are prepared to give up everything that depends on something
that we must give up to maintain consistency. But, we want to keep in as many
independent facts as we can.

e Note that this constitutes a significant revision of Ramsey’s Test, which
motivated the Stalnaker-Lewis theory:

This is how to evaluate a conditional: first, add the antecedent (hypotheti-
cally) to your stock of beliefs; second, make whatever adjustments are required
to maintain consistency (without modifying the hypothetical belief in the an-
tecedent); finally, consider whether or not the consequent is true.

(Stalnaker 1968: 106)

> You also want to give up the beliefs that depend on the beliefs you have
to give up to maintain consistency

e Kratzer (1989) developed lumping semantics to account for this kind of
phenomena, but her approach faces technical difficulties. (Kanazawa et al.
2005; Kratzer 1990, 2002, 2005)

e Veltman’s (2005) theory provides an alternative formalization that still cap-
tures this intuitive diagnosis

e Veltman’s theory is developed in the framework of Update Semantics
(Veltman 1996), where the meaning of a formula is taken to be an operation
on cognitive states

> This more dynamic & procedural perspective on meaning makes the rela-
tionship between recipes like Ramsey’s Test and the content of the formal
theory utterly transparent. Notice how untrue this is of the Stalnaker-
Lewis theory!

> It also allows one to interpret counterfactuals as a simple sequence of
operations: if had been ¢ creates a subordinating info state S’ & then it
would have been 1 is tested in S’. This allows the semantics to operate
on surface strings. Other theories require LFs that are very far-removed
from what we see & hear. (see Kratzer 1986)



2 Technical Preliminaries
2.1 Possible Worlds Semantics

e Veltman begins by introducing the basic ideas of possible worlds semantics
e Def.[-] shows how to reinterpret the connectives of classical logic as set-
theoretic operations on possible worlds

e When A = {A B, C}, W can be depicted as follows:

WA B C
w 0O 0 0

'wcl) 0 0 1 ° [[A]] = {w07w17w2,w;3}

wp | 010 o [-A] = {wy, ws, wg, wr}

w3 |0 1 1

w4 1 0 0 L4 IIA A B]] = {w6’w7}

ws |1 0 1

wz 1 1 0 [ ] [[(A /\ B) — C]] = {IUO;UJ1,w2,w3,w4,w57w7}
wr |1 1 1

e But notice also the presence of situations

o These are incomplete worlds which only give truth values to certain for-
mulae

o They allow us to talk about commonalities among worlds & ignore irrel-
evant differences between worlds

2.2 Update Semantics

To capture the meaning of counterfactuals Veltman employs a dynamic no-
tion of meaning, according to which the meaning of a sentence is the change
it brings about in the cognitive state of anyone who wants to incorporate the
information conveyed by it. He models this as follows.

e The meaning [¢] of a sentence ¢ is an operation on cognitive states
e Cognitive states are defined in Def.S 3

e Ordinary sentences will update Fg, while sentences stating laws will update
both F. S & U S

o After all, laws inform you both about what particular facts hold about
the actual world, and what worlds are generally possible

e To represent laws formally, Veltman introduces an operator O:

o O¢ means it is a law that ¢

e Def.[-] captures these two kinds of updates with two different clauses

3 Veltman'’s division of information relevant to the interpretation of counterfactuals
into laws and relevant facts resembles greatly the cotenability theory offered by
Goodman (1947).



2.2 Update Semantics

These concepts allow the definition of another important notion in updates
semantics: support

The idea is that a state S supports ¢ when updating with ¢ adds no infor-
mation over & above what is already in S

As for logical consequence, the idea is that some premises entail a conclusion
if updating an arbitrary state with that sequence invariably leads to a state

that supports the conclusion

2.2.1 Two Examples

Throughout the remainder of the presentation, we’ll use the following trans-

lations:
> It is raining ~ R
18 wearing ,
> Jones { } his hat ~ W
wears
>  The coin came up heads ~ H
Example 1

e Let’s consider the state Sy = 1[-R][O(H — W)], and how it comes about

1 R W H S; [R W H S; [R W H
we |0 0 O we |0 0 O we |0 0 O
w, |0 0 1 w, |0 0 1 wy B OB X
wy, |0 1 0 wy, |0 1 0 wy, |0 1 0
ws [0 1 1][-R] ws |0 1 1| [OH—=W) ws |0 1 1
ws|1 0 O wy, |1 0 0 wy, |1 0 0
ws |1 0 1 ws |1 0 1 we | XWX
wg |1 1 O wg |1 1 0 wg |1 1 0
wr 1 1 1 Wy 1 1 1 wy 1 1 1

o Bold worlds belong to Fyg; all non-cancelled worlds are in Ug
(NB: Fs C Ug)
o We begin with 1 = (W, W) and find S; = 1[-R]:

>> To find S intersect Fy with [-R], i.e. throw the R-worlds out of W

o Now find S;[O(H — W)]:

> Intersect Fs, and Ug, with [(H — W)], i.e. completely throw the
(H A =W)-worlds out of the state (cross them out)

e Thinking graphically, O can be thought of as a quantifier over rows of the

table; it says: cross out every row that falsifies the formula in my scope




Example 2

e Consider the state S3 = 1[O0(R — W)][R A W], and how it comes about

1 |R W H St |R W H S3; | R W H
we |0 0 O we |0 0 O wg |0 0 0
w, |0 0 1 w; |0 0 1 wp |0 0 1
w, |0 1 O we, |0 1 0 we |0 1 0
w3 |0 1 1[[OR—-W)] |ws|0 1 1| [[RAW] [ws|[0 1 1
wg|1 0 O we [ XK BB we | K BOH
ws |1 0 1 we [ X OB X ws | K B X
weg|1 1 0 weg|1 1 0 we|1 1 0
wry |1 1 1 wr |1 1 1 wy |1 1 1

3 Interpreting Counterfactuals Dynamically

Now it’s time to look at Veltman’s approach to interpreting counterfactuals

e Examples like (1) suggest that Ramsey’s Test should be replaced with the
following;:

Veltman’s Test To assess a counterfactual if it had been ¢, it would have
been 1) carry out this process:
@ Remove —¢ & anything that depends on it from your belief state
@ Update your beliefs hypothetically with ¢
@ Test wether or not your beliefs now support

e Veltman implements this test formally as follows:

o Step @ is achieved by retracting [—¢] from S, i.e. forming a state S | [-¢]
o Step @ is achieved by updating S| [-¢] with ¢: (S| [—¢])[¢]
o Step @ is achieved by testing whether or not (S| [-¢])[¢] E ¢

e Carrying out steps @ & @ is what Veltman calls making a counterfac-
tual assumption, and corresponds to the interpretation of the antecedent

(Def.4.3), while step @ corresponds to interpreting the consequent in the
state derived in the first two steps

e The technical heart of the theory resides in correctly defining retraction

e So, before looking at the formal definition, let’s consider what it must do
to get examples (1) & (2) right



3.1 How to Get (1) & (2) Right

3.1 How to Get (1) & (2) Right

3.1.1 Example (1)
e Our goal is to predict that (1d) is not good in (1):

(1) a. Invariably, if it is raining, Jones wears his hat
b. If it is not raining, Jones wears his hat at random
c. Today, it is raining and so Jones is wearing his hat
d. But, even if it had not been raining, Jones would have been wearing
his hat

e Given our translations in §2.2.1, (1) ~ (1'):

(1 a. OR — W)
b. (Not included in Veltman’s analysis)
c. RAW
d. If it had been =R, it would have been W

e (1d') is interpreted in the state S3 = 1[O(R — W)][R A W], which we calcu-
lated earlier (§2.2.1):

S3 | R W H
wg |0 0 0
w1 0 0 1
we |0 1 0
W3 0 1 1
we | X BB
we | X B X
weg |1 1 0
wry |1 1 1

e Recall that the plan is to assess a counterfactual by testing whether or not
(S | [~o])[¢] E ¢, but we want to be clear what operation | must be in
order for this definition to cohere with the data

e So, we're looking for a definition of | that allows us to show:
Fact 1 (S3][-—R])[-R] £ W

o Sy:= (S [~RD[-R]

e From Fact 1 we derive two constraints Fg,:

(i) we,wy ¢ Fg, (since Sy arises from an update with —R)
(ii) wo € Fg, or wy € Fg,, or both (since Sy = W)

e The largest set consistent with these facts is shown below:



3.1 How to Get (1) & (2) Right

Si|R W H
we | 0 0 O
w; |0 0 1
w2 |0 1 O
ws [0 1 1
we | X H OB
ws [ KB X
wg |1 1 0
wr 1 1 1

e Now, we’ll see what constraints example (2) places on |

e We can then see which definitions meet both sets of constraints, making
more clear how & Veltman arrived at the definition that he did

3.1.2 Example (2)

e Our goal is to predict that (2f) is good in (2):
(2) a. Jones always flips a coin before he opens the curtain to see what the
weather is like
b. If it’s not raining and the coin comes up heads, he wears his hat
c. If it’s not raining and the coin comes up tails, he doesn’t wear his
hat
. Invariably, if it is raining he wears his hat
. Today, the coin came up heads and it is raining, so Jones is wearing
his hat
f. But, even if it hadn’t been raining, Jones would have been wearing
his hat

o o

e Given our translations in §2.2.1, (2) ~ (2/):

(2')a. (Not included in analysis)
b. O(RVH) < W)
c. (Incorporated into (2b')
d. (Incorporated into (2b')
e. (HAR)AW
f. If it had been =R, it would have been W

e So we want to a definition of | that allows us to show the following, where
S5 :=1[0((RVH) < W)][HAR]:

Fact 2 (S; | [--R])[-R] |- W



3.1 How to Get (1) & (2) Right

e To see what this amounts to, we first find Ss:

1 [R W H R W H Ss R W H
wo |0 0 O we |0 0 O wy |0 0 0
w, |0 0 1 I ¢ we | BB X
wy, |0 1 0 we |0 X B we | BOX W
ws |0 1 1|O0(RVH <W)|ws|[0 1 1|[HAR|wy |0 1 1
wy|1 0 O we | X BB we | X BB
ws|1 0 1 we | X B X we | X B X
wg|1l 1 0 wg|1 1 0 ws |1 1 0
wr |1 1 1 wr, |1 1 1 wr |1 1 1

e What follows about Sg := (S5 | [-—R])[-R] from Fact 27

(i) We, W7 ¢ FSS
(i) wo & F,

e This narrows the possibilities down to one:

Se | R W

T

SXEEERS
— RO O
R R = O
— O MO

(%

e We can now say precisely what needs to happen to get examples (1) & (2)
right



3.1 How to Get (1) & (2) Right

3.1.3 Putting the Pieces Together

e In the previous two sections we determined what a satisfactory definition of
retraction must do (in graphical format):

Condition 1

Ss |R W H Sy |R-W H
w |0 0 0 we |0 0 O
w, |0 0 1 w; |0 0 1
wy, |0 1 0 wy |0 1 0
ws |0 1 1| S3L[-R)H-R] fws | 0 1 1
we | X BB we | KB OH
ws | X B X ws | X B X
weg|1 1 0 weg | 1 1 0
wy |1 1 1 wy |11 1
Condition 2
SR W H Ss [R_ W _H
we |0 0 0 wg |0 0 O
we | BB X we | HOBX
we | B X R we | HOX B
ws |0 1 1| (SL[=-RD-R] fws |0 1 1
we | X BB we | XOB OB
ws | X B X ws | X B X
ws |1 1 0 wg |1 1 0
wy |1 1 1 wy |11 1

e While Condition 1 suggests that S3 | [-—R] is the set of all =R-worlds in
Fg, this strategy does not work for Condition 2, since wy can’t be in Fg,

e Veltman (2005: 168) proposes the following solution:
o To retract [-¢] from S the following must be done for every w € Fg and
every basis s’ for w:
@ If ¢’ forces [-¢], make minimal adjustments to s’ s.t. it doesn’t
@ Call each result of step ® s
® Each world in Ug extending such an s belongs to Fg[-¢]

o S| P is defined more formally in Definition 4
o Basis & Forcing defined formally in Definition 3

> Intuitively, s is a basis for w if s is among the minimal situations
that can be used to uniquely identify w in Ug

> Intuitively, s forces P within Ug just in case every world w in Ug that
s is in is also in P

10



3.1 How to Get (1) & (2) Right

e Let’s see that Veltman’s proposal meets Condition 1:

o There are two worlds in Fs,: wg & wr

Case 1 (wg)
@ One basis: {(R, 1), (H, 0)}; maximal subset that doesn’t force [-—R]:

{(H,0)}

@ wp, wy & wg extend (H,0), so {wq, ws, ws} C F,

Case 2 (wy)
@ One basis: {(R, 1), (H, 1)}; maximal subset that doesn’t force [-—R]:

{(H, 1)}

® wy,ws & wr extend (H, 1), so now {wg, wy, wy, w3, wg, wr} C Fg,
o So S3l[[_‘_'R]] = <US,{’(U0,?,U1,’LU2,QU3,1U6,'I.U7}>
e} Thus, (Sgl[[_\_'R]])[_'R] = <U5, {wo,wl, U)Q,’UJg}) = S4

o Perfect!

e Let’s see that Veltman’s proposal meets Condition 2:

o There is one world in F§,: wy
@ One basis: {(R, 1), (H, 1) }; maximal subset that doesn’t force [-—R]:
{(H,1)}

@ ws & wy extend (H, 1), so {ws, w7} = Fg,
© So S5 | [==R] = (Us, {ws, wr})
o Thus, (S5][-—R])[-R] = (Us, {ws}) = Se
o \/_ !
e To see how the formal definitions mirror this intuitive version of the theory
we’ll work through example (1) in full detail

e ['ve written a program in PLT Scheme that grinds out predictions for Velt-
man’s theory; I've used it to verify that his predictions for (2) are indeed
correct, although working through a full derivation would be a good exercise
for those wishing to understand the theory better

11



3.1 How to Get (1) & (2) Right

3.1.4 Example (1) in Detail
e Recall that (1) ~ (1'):
(1) a. O(R — W)
b. (Not included in Veltman’s analysis)

c. RAW
d. If it had been =R, it would have been W

e We want to show:

Fact 1
1[O0(R — W)][R A W|[if it had been —R] = W

e For this example we only really need two atomic sentences, so let’s recalcu-
late 1[O(R — W)][R A W]:

1 | R W S |R W Sy | R W
wo |0 O we [0 O wy | 0 0
wi |0 1 |[OR=W)|w |0 1/|RAW]|w |0 1
wy |1 0 wg | X B wg | X B
wg |1 1 ws | 1 1 ws | 1 1
e Find S;[if it had been —R]:
Ss[if it had been —R] = S | [-—-R][-R] (Def 4.3)
= (Uss1[-R1> Fss11-r1) [7R] (Def 4.2)
= <US3, FS?,H[ﬁﬁRﬂ)[—'R] (Def 4.2.8) (5)

o Find FggluﬁﬁR]] :

Foy[--r) = {w | w e Us, & Fu' € Fg,,3s € w' | [--R] : s C w} (Def 4.2.b)
={w|we Us, & ' € Fg,,3s € w' | {wo, w3} : s Cw}  (Def [-¢])
={w|w e Us, & Is € wz | {wz, w3} : s Cw} (6)

(Fsy = {ws})

> Find ws | {ws, w3}

wz | {we, w3} ={s|s Cws & Is': ¢ is a basis for ws & (Def 4.1)
s is a maximal subset of s’
not forcing {ws, w3} }

12



3.1 How to Get (1) & (2) Right

» Since s C ws the only four situations that could be in

ws | {wy, w3} are s = {(R, 1)}, 50 = {(R, 1), (W, 1)},
s3={(W,1)} & @.

* §1 € wy | {wy, w3}? Noj s; forces {wsy, w3}, since the only
world w € Ug, s.t. s1 C w is w3 and ws € {wsq, w3}.

* 9 € ws | {we,ws3}? No, for the same reason as the last
case.

*x 83 € w3 | {ws, ws}? s3 does not force {wy,w3}. Is": §' is a
basis for ws & s3 C s'7 No. ws only has one basis, {(R, 1)},

and s3 € {(R,1)}

* & € wy | {wy, w3}? Yes. @ does not force {wq, w3}, since
Jw € Ug, s.t. @ C w while @ ¢ {ws, ws}; namely w; &
wy. Also, {(R,1)} is the unique basis for ws, so we find
the set of all subsets of {(R, 1)} that do not force {wq, ws}.
{(R, 1)} forces {ws, w3}, so the only such subset is &, hence
it is the maximal such subset.

Therefore ws | {ws, w3} = {2}

Substituting this result back into (6) we get the following:

Fo -k = {w | w € Us, & Is € wy | {wo, w3} : s Cw}
={w|weUs & Is € {@}:s Cw}
={w|weUs & @ Cw}
= Us, (7)

Substituting this result back into (5) gives us:

Ssif it had been —R] = (Us,, Fs,)[--r)) ["R]

= (Usy; Usy)[7R]

= (Usy, Us, N {wo, w1 }) (Def.S[¢], Def.[-¢])
= (Us;, {wo, w1 }) (8)

o This is exactly what we want, since it allows us to show that
Ss[if it had been —R] = W:

(Uss, {wo, w1})[W] = (Us,, {wo, w1} N {wr, ws})
= <U537 {w1}>
# (Uss, {wo, w1 }) (9)

By Def.}=, (9) implies that (Us,, {wo, w;}) K= W. From (8) we know that
this means Ss[if it had been —R] = W. Unpacking S3 we get:
Fact 1 1[0(R — W)][R A W][if it had been —R] F= W

13



4 Propositions, Support & Truth

e In the previous sections all we assumed about the interpretation of coun-
terfactuals was:

Counterfactual Support Constraint
S = if it had been ¢, it would have been 1 <= Slif it had been ¢| |= 1
e But this can’t be all there is to the story

e If we allowed discourse after a counterfactual to be interpreted in the state
Slif it had been ¢] we’d make the prediction that discourses like the follow-
ing are good:

(10)
a. If Oswald hadn’t killed Kennedy, someone else would have
b. In fact, Oswald didn’t kill Kennedy

e It will always be the case that S[if it had been ¢| = ¢, but this is a problem
since you can’t follow up a counterfactual by asserting its antecedent

e Similarly you can’t generally follow up a counterfactual by asserting its
consequent, but if we interpret discourse coming after a counterfactual in
the state S[if it had been ¢] then we predict the opposite

e Accordingly, it looks as if only the consequent is interpreted in S[if it had been ¢|,
but subsequent discourse is interpreted in the original input state S

e This idea is captured formally in Definition 5, where counterfactuals are
treated as tests?

e This implementation gives rise to some pressing questions:
o Is anaphora out of counterfactuals possible?
o Don’t counterfactuals express propositions?
> If so, which ones?
> If not, how can counterfactuals be informative?

e Later in the course we’ll consider the first question more; for now, let’s focus
on the second one

4 Note that the notion of test here is different than in DPL. In DPL ‘tests’ are
more like ‘filters” they can eliminate assignments from the info state, but don’t add
any. Tests here, on the other hand, neither add nor subtract information; passing
the test means proceeding with the exact same state that was the input and failing
means transitioning to the absurd state. This difference is relevant here, since it is
obvious how tests in the DPL sense can be informative.

14



4.1 How are Counterfactual Tests Informative?

4.1 How are Counterfactual Tests Informative?

e According to Definition 5, interpreting a counterfactual simply amounts to
performing a test on your state of information

e When combined with Veltman’s approach to interpretation, the resulting
picture faces a puzzle:
o Information states are conceived of as individualistic representations;
they are psychological entities?®
o So, you interpret my utterances by evaluating them in your information
state

o But wait, if you don’t already accept the counterfactual I am attempting
to communicate, then aren’t you going to just think it is false, since your
info state will fail the test counterfactuals trigger?

> Of course there will be mutual public constraints on information states; such
constraints seem to be largely governed by pragmatic reasoning. (see Thomason
et al. to appear)

15



4.1 How are Counterfactual Tests Informative?

e Veltman’s solution to this puzzle is two-fold:

(i) First, he maintains that when the laws are fixed, as in chess or classical
mechanics, it is possible to give normal update & propositional clauses
that are correct; namely those in Definition 6

(ii) When the laws are not fixed, we rely on pragmatic strategies to extract
information from discourse involving counterfactuals:

Given [Definition 5], sentences of the form "if had been ¢, would have been 7
do not convey new information — not directly at least. They provide an
invitation to perform a test. By asserting " if had been ¢, would have been 7,
a speaker makes a kind of comment: ‘Given the general laws and the facts I
am acquainted with, the sentence 1 is supported by the state I get in when
I assume that ¢ had been the case’ The addressee is supposed to determine
whether the same holds on account of his or her own information. If not, a
discussion will arise, and in the course of this discussion both the speaker
and the hearer may learn some new laws and facts, which could affect the
outcome of the test. (Veltman 2005: 171)

> Note that if your state does not pass the test it is indeterminate
how you should change your state to pass it: you can either assume
new laws or some new facts. This suggests that one must move to a
pragmatic story for this kind of phenomena once info states get split
into law and fact bases. It is only through the course of interrogation
that an addressee can determine how to coordinate his info state with
the speaker.

e Why doesn’t Definition 6 work when the laws are not fixed?

o Counterfactuals often communicate information about laws, but this is
not captured in Definition 6; neither in the propositions they express (Def
6.3) nor in the updates they trigger (Def 6.4)

e Is their some intuitive justification for having things turn out like this, or is
it just an unfortunate consequence of splitting info states into information
pertaining to laws and information pertaining to facts?

16



5 Beyond Veltman (2005)

The Duchess
The duchess has been murdered, and you are supposed to find the murderer.
At some point only the butler and the gardener are left as suspects. At this
point you believe:

(11) If the butler did not kill her, the gardener did

Still, somewhat later — after you found convincing evidence showing that
the butler did it, and that the garderer had nothing to do with it — you
get in a state in which you will reject the sentence:

(12) If the butler had not killed her, the gardener would have [killed her]

e As Veltman (2005: 174-5) shows, his theory predicts that (12) is to be re-
jected

e But, several authors have argued that (12) has a reading on which it is true

o This is the so-called epistemic reading; the idea is that (12) communi-
cates the idea that there was a stage in the evolution of your epistemic
state where you would have concluded from the information that the but-
ler didn’t do it — even though you've found that he did — that the
gardener did it

e [ don’t get any such reading, particularly when the elliptical killed her is
filled in (though I'm not sure why)

e Veltman claims that there is no epistemic reading; Schulz disagrees. What
to do?

> Let’s look at more data

The Hamburger (Hansson 1989)
Suppose that one night you approach a small town of which you know that
it has exactly two snackbars. Just before entering the town you meet a
man eating a hamburger. You have good reason to accept the following
conditional:

(13) If snackbar A is closed, snackbar B is open

Suppose now that after entering the town & seeing the man with the burger,
you see that A is in fact open. Can you then think to yourself:

(14) [Even] if snackbar A had been closed, snackbar B would have been
open

e This example seems much better to me, but still borderline.
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5.1 Another Kind of Case

5.1 Another Kind of Case

King Ludwig (Kratzer 1989: 640)
King Ludwig of Bavaria likes to spend his weekends at Leoni Castle. When-
ever the Royal Bavarian flag is up and the lights are on, the King is in the
castle. At the moment the lights are on, the flag is down, and the King is
away. But:

(15) If the flag had been up, then the King would have been in the castle

e It seems as if (15) is true, but, as Veltman (2005: 177-6) shows, his theory
predicts it to be unacceptable

e Although this is a problem for the theory, there are examples with the same
abstract structure that require the prediction that Veltman’s theory makes:

Ann, Billie & Carol
Consider the case of three sisters who own just one bed, large enough for
two of them but too small for all three. Every night at least one of them has
to sleep on the floor. Whenever Ann sleeps in the bed and Billie sleeps in
the bed, Carol sleeps on the floor. At the moment Billie is sleeping in bed,
Ann is sleeping on the floor, and Carol is sleeping in bed.

(16) If Ann had been in bed, Carol would have been sleeping on the floor

e (16) seems to be false; why wouldn’t Billie be on the floor?
e In parallel we might ask why the lights wouldn’t have been off and the King
still away.
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6 Formal Definitions

Worlds W ={w |w: A~ {0,1}}
(A world w is a function that gives every atomic formula a truth-value)
Situations N ={s|sCw & w e W}
(A situation s is a partial world; it assigns only some atomic formulae truth-
values)

Proposition A proposition is a set of worlds, intuitively the set of worlds
where a sentence is true.

Definition of [-] (Propositions)

[Al ={w € W | w(A) = 1}, where A € A
[~¢] =W ~ [¢]
[ Ayl =[¢] N [¥]
[o VY] =[¢] U [¥]
[¢ = v]=W ~ [¢]) U [¢¥]

Definition of S (States)
o S = (Ug, Fs), where either of the following conditions holds:
(1) @#Fs CUs CW
(2) Fs=Us=2
o w € Fyg just in case, for all the agent knows, w might be the actual world
(‘F” for fact)
o Ug is the set of worlds consistent with the general laws the agent knows

(‘U’ for universe)
o 1:=(W,W); 1 is the minimal state
o 0:=(@,2); 0 is the absurd state
Definition of [-] (Basic Interpretation)
S[¢| = (Us, F's N [¢]) if FsN [¢] # @
0 otherwise
_JWsnlel, Esnlel) it Fsn[o] # 2
S[O¢] = .
0 otherwise

Definition of = (Support, Logical Consequence)

SE¢ <<= Sp|=5 (S supports ¢)
O1y O E YV <= VS S[t1]...[on] E (¢1,...,¢, logically entail )
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Definition 3 (Forcing, Determination, Basis)

(a) The situation s forces the proposition P within Uy iff for every
w € Ug such that s C w it holds that w € P.

(b) The situation s determines the world w iff s forces {w} within Us.

(c¢) The situation s is a basis for the world w iff s is a minimal situation
determining w within Usg.

Definition 4 (Retraction, Counterfactual Assumption)
(1) Suppose w € Ug, and P C W. Then:

wl]P={s|sCwé& 3" :5 is a basis for w & s is a maximal subset of s’ not forcing P}
(2) S|P = (Us,p, Fs p) (the retraction of P from S5), where:

(a) Usip =Us

(b) Fsyp={w|weUs & Fuw € Fs,Is€w' | P:s Cw}
(3) STif it had been the case that ¢| = (S| [=¢])[o]
Intuitive Gloss of Retraction

o To retract [¢] from S the following must be done for every w € Fg and
every basis s’ for w:

@ If s’ forces [-¢], make minimal adjustments to s’ s.t. it doesn’t
@ Call each result of step @ s
@ Each world in Ug extending such an s belongs to Fg|[-¢]

Definition 5 (Counterfactuals as Tests)

S if S[if it had been ¢] E 9

0 otherwise

Slif it had been ¢, it would have been )] = {

Definition 6 (Counterfactual Updates & Propositions)
When Uy is fixed, normal update & proposition clauses can be given for
counterfactuals

(1) Jv € Fs: (Ug, {v})[if it had been ¢| = ¢ =
S|if had been ¢, would have been | = (Ug,{v € Fs | (U,{v})[if had been ¢| = 1})
(2) Otherwise, S[if had been ¢, would have been 1] = 0
(3) [if had been ¢, would have been ] = {w € W | (U,{w})[if had been ¢] | ¥}
(4) S[if had been ¢, would have been | = (Ug, Fs N [if had been ¢, would have been 1))
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