Notes on Thomason (1970)

WILLIAM B. STARR

1 Thomason's Logic of Indeterminist Time (LIT)

Below I summarize the formal system presented in Thomason (1970)

1.1 Syntax

(1)
	T)

0.	$\alpha \in \mathcal{A}t = \{A_1, \ldots, A_n, \ldots\}$	\implies	$\alpha \in \mathcal{W} f\!\!f$	Atomic
1.	$\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	\implies	$[\mathbf{F}]\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	Future Tense
2.	$\phi \in \mathcal{W} \! f \! f$	\implies	$[\mathbf{P}]\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	Past Tense
3.	$\phi \in \mathcal{W} \! f \! f$	\implies	$[\mathbf{L}]\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	Inevitability
4.	$\phi \in \mathcal{W} \! f \! f$	\implies	$[\mathbf{T}]\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	Truth
5.	$\phi \in \mathcal{W} \! f \! f$	\implies	$\neg\phi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	Negation
6.	$\phi,\psi\in\mathcal{W}\!\mathit{f}\!\mathit{f}$	\implies	$\phi \to \psi \in \mathcal{W} f\!\!f$	Material Conditional

1.2 Semantics

1.2.1 Models

- (2) $\mathcal{M} = \langle \mathcal{T}, \langle \rangle$
 - 1. \mathcal{T} is a non-empty set of **times**
 - 2. < is a (binary) **temporal precedence** relation on \mathcal{T} . It satisfies three axioms:

Connectedness of the Past (Thomason 1970: 266)

 $\forall t_1, t_2, t_3 \in \mathcal{T}, \text{ if } t_2 \neq t_3, t_2 < t_1 \& t_3 < t_1 \text{ then } t_2 < t_3 \text{ or } t_3 < t_2$

Email: wstarr@rutgers.edu.

URL: http://eden.rutgers.edu/~wbstarr.

Transitivity (Thomason 1970: 266) $\forall t_1, t_2, t_3 \in \mathcal{T}$, if $t_1 < t_2 \& t_2 < t_3$ then $t_1 < t_3$ **Closure** (Thomason 1970: 277) $\forall t_1 \exists t_2, t_1 < t_2$

1.2.2 Histories

Histories are maximal chains of times

- (3) \mathcal{H} is the set of **histories**, where h is a history iff 1-3 are met:
 - 1. $h \subseteq \mathcal{T}$

Histories are collections of times

- 2. $\forall t_1, t_2 \in h$, if $t_1 \neq t_2$ then $t_1 < t_2$ or $t_2 < t_1$ Every time in a history is related by temporal precedence
- If h' ⊆ T s.t.: ∀t₁, t₂ ∈ h', if t₁ ≠ t₂ then t₁ < t₂ or t₂ < t₁ then, h' = h if h ⊆ h'
 Histories are the biggest collections of related times
- (4) If $t \in \mathcal{T}$ then \mathcal{H}_t is the set of all histories h_t containing t

1.2.3 Valuations, Truth & Supertruth

- (5) $V(\alpha, t) : (\mathcal{A}t \times \mathcal{T}) \mapsto \{0, 1\}$ is an atomic valuation Notation: $V_t(\phi) := V(\phi, t)$
- (6) $V(\phi, t, h) : (\mathcal{W}ff \times \mathcal{T} \times \mathcal{H}) \mapsto \{0, 1\}$ is a (bivalent) valuation iff $t \in h$ & 1-6 hold: Notation: $V_t^h(\phi) := V(\phi, t, h)$

1.	$V^h_t(\alpha)$	=	$V_t(\alpha)$
2.	$V^h_t(\phi \to \psi) = 1$	\iff	$V_t^h(\phi) = 0$ or $V_t^h(\psi) = 1$
3.	$V^h_t(\neg\phi)=1$	\iff	$V^h_t(\phi)$
4.	$V_t^h([\mathbf{F}]\phi) = 1$	\iff	$\exists t' \in h: V^h_{t'}(\phi) = 1 \ \& \ t < t'$
5.	$V_t^h([\mathbf{P}]\phi) = 1$	\iff	$\exists t' \in h: V^h_{t'}(\phi) = 1 \ \& \ t' < t$
6.	$V^h_t([\mathbf{L}]\phi) = 1$	\iff	$\forall h' \in \mathcal{H}_t : V_t^{h'}(\phi) = 1$
7.	$V_t^h([\mathbf{T}]\phi) = 1$	\iff	$V_t^h(\phi) = 1$

We say ϕ is **true** at t relative to h iff $V_t^h(\phi) = 1$

(7) $\mathbb{V}(\phi, t) : F \times \mathcal{T} \mapsto \{1, 0\}$ is a **super-valuation** iff $F \subseteq \mathcal{W}$ ff & 1-2 hold: Notation: $\mathbb{V}(\phi)_t := \mathbb{V}(\phi, t)$ 1. $\mathbb{V}_t(\phi) = 1 \iff \forall h \in \mathcal{H}_t : V_t^h(\phi) = 1$ 2. $\mathbb{V}_t(\phi) = 0 \iff \forall h \in \mathcal{H}_t : V_t^h(\phi) = 0$

Note: $\mathbb{V}_t(\phi)$ is otherwise undefined, so supervaluations aren't bivalent We say ϕ is **supertrue** at t iff $\mathbb{V}_t(\phi) = 1$

1.2.4 Consequence & Validity

(8) $\Gamma \Vdash \phi \quad \iff \quad \forall \mathbb{V}_t, \mathcal{M}, t \in \mathcal{T}_{\mathcal{M}} : \mathbb{V}_t(\phi) = 1 \text{ if } \forall \psi \in \Gamma : \mathbb{V}_t(\psi) = 1$

Consequence is preservation of supertruth in all models under all supervaluations

 $(9) \Vdash \phi \iff \varnothing \Vdash \phi$

Validity is supertruth in all models under all supervaluations

2 Applications of LIT

• If we restricted ourselves to linear models, like \mathcal{M}_1 , we would have $\models [F]\phi \rightarrow [L][F]\phi$ as well as $[F]\phi \models [L][F]\phi$

Fig. 1. \mathcal{M}_1 : a linear model structure

- Both these facts seem to amount to determinism, which shouldn't follow as a matter of logic!
- To allow our tense logic to be indeterministic, LIT allows branching models like \mathcal{M}_2

Fig. 2. \mathcal{M}_2 : a branching model structure under some valuations

- \mathcal{M}_2 provides us with enough to show $\not\models [F]\phi \to [L][F]\phi$
- In \mathcal{M}_2 there are two histories: $h_1 = \{t_1, t_2\} \& h_2 = \{t_1, t_3, t_4\}$

- $V_{t_1}^{h_1}([\mathbf{F}]\phi) = 1$, since $t_1 < t_2 \& V_{t_2}^{h_1}(\phi) = 1$ (By 6.4)
- ∘ $V_{t_1}^{h_1}([L][F]\phi) = 0$, because $V_{t_1}^{h_2}([F]\phi) = 0$ since $\nexists t \in h_2 : t_1 < t \& V_t^{h_2}(\phi) = 1$ (By 6.4,6.6)
- So $\exists h: V_{t_1}^h([\mathbf{F}]\phi \to [\mathbf{L}][\mathbf{F}]\phi) = 0$, namely h_1
 - ▶ Therefore, $\mathbb{V}_{t_1}(\phi)$ is undefined (By 7) & so $\mathbb{W}[\mathbf{F}]\phi \to [\mathbf{L}][\mathbf{F}]\phi$ (By 8)
- Interestingly: $[F]\phi \Vdash [L][F]\phi$
- Here's what Thomason (1970) says about it (using our notation):

Here we have a case in which [material] implication differs from consequence; $[L][F]\phi$ is a consequence of $[F]\phi$ but does not imply $[F]\phi$. Intuitively this means that the argument from $[F]\phi$ to $[L][F]\phi$ is a valid one, for if it is already true that a thing will come to be, it is inevitable that it will come to be. But at the same time, it does not follow from supposing that a thing will come to be that it will inevitably come to be. To suppose that ϕ will be is to posit that we will be in a situation in which ϕ is true, that we will follow history h in which ϕ is sooner or later satisfied. But this is quite different from positing that such histories are the only alternatives now open; this would amount to positing that ϕ is inevitable. In our semantic theory this difference between supposing that ϕ will be and supposing that it is now true that ϕ will be is represented by the difference between making $[F]\phi$ and antecedent of a [material] implication as in 6.5 and making it a premise of the consequence relation as in 6.3.

• This sounds a lot like Aristotle when he maintains that *what is necessarily is, when it is* while maintaining that some future contingents are gappy

References

THOMASON, R. H. (1970). 'Indeterminist Time and Truth-Value Gaps'. *Theoria*, **36**: 246–281.