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1 Thomason’s Logic of Indeterminist Time (LIT)

Below I summarize the formal system presented in Thomason (1970)

1.1 Syntax

(1)

0. α ∈ At = {A1, . . . , An, . . .} =⇒ α ∈ Wff Atomic

1. φ ∈ Wff =⇒ [f]φ ∈ Wff Future Tense

2. φ ∈ Wff =⇒ [p]φ ∈ Wff Past Tense

3. φ ∈ Wff =⇒ [l]φ ∈ Wff Inevitability

4. φ ∈ Wff =⇒ [t]φ ∈ Wff Truth

5. φ ∈ Wff =⇒ ¬φ ∈ Wff Negation

6. φ, ψ ∈ Wff =⇒ φ→ ψ ∈ Wff Material Conditional

1.2 Semantics

1.2.1 Models

(2) M = 〈T , <〉
1. T is a non-empty set of times
2. < is a (binary) temporal precedence relation on T . It satisfies three axioms:

Connectedness of the Past (Thomason 1970: 266)
∀t1, t2, t3 ∈ T , if t2 6= t3, t2 < t1 & t3 < t1 then t2 < t3 or t3 < t2
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1.2 Semantics

Transitivity (Thomason 1970: 266)
∀t1, t2, t3 ∈ T , if t1 < t2 & t2 < t3 then t1 < t3

Closure (Thomason 1970: 277)
∀t1 ∃t2, t1 < t2

1.2.2 Histories

Histories are maximal chains of times

(3) H is the set of histories, where h is a history iff 1-3 are met:

1. h ⊆ T
Histories are collections of times

2. ∀t1, t2 ∈ h, if t1 6= t2 then t1 < t2 or t2 < t1

Every time in a history is related by temporal precedence

3. If h′ ⊆ T s.t.: ∀t1, t2 ∈ h′, if t1 6= t2 then t1 < t2 or t2 < t1
then, h′ = h if h ⊆ h′

Histories are the biggest collections of related times

(4) If t ∈ T then Ht is the set of all histories ht containing t

1.2.3 Valuations, Truth & Supertruth

(5) V (α, t) : (At× T ) 7→ {0, 1} is an atomic valuation

Notation: Vt(φ) := V (φ, t)

(6) V (φ, t, h) : (Wff× T ×H) 7→ {0, 1} is a (bivalent) valuation iff t ∈ h & 1-6 hold:

Notation: V h
t (φ) := V (φ, t, h)

1. V h
t (α) = Vt(α)

2. V h
t (φ→ ψ) = 1 ⇐⇒ V h

t (φ) = 0 or V h
t (ψ) = 1

3. V h
t (¬φ) = 1 ⇐⇒ V h

t (φ)

4. V h
t ([f]φ) = 1 ⇐⇒ ∃t′ ∈ h : V h

t′(φ) = 1 & t < t′

5. V h
t ([p]φ) = 1 ⇐⇒ ∃t′ ∈ h : V h

t′(φ) = 1 & t′ < t

6. V h
t ([l]φ) = 1 ⇐⇒ ∀h′ ∈ Ht : V h′

t (φ) = 1

7. V h
t ([t]φ) = 1 ⇐⇒ V h

t (φ) = 1

We say φ is true at t relative to h iff V h
t (φ) = 1

(7) V(φ, t) : F × T 7→ {1, 0} is a super-valuation iff F ⊆ Wff & 1-2 hold:

Notation: V(φ)t := V(φ, t)
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1. Vt(φ) = 1 ⇐⇒ ∀h ∈ Ht : V h
t (φ) = 1

2. Vt(φ) = 0 ⇐⇒ ∀h ∈ Ht : V h
t (φ) = 0

Note: Vt(φ) is otherwise undefined, so supervaluations aren’t bivalent

We say φ is supertrue at t iff Vt(φ) = 1

1.2.4 Consequence & Validity

(8) Γ  φ ⇐⇒ ∀Vt,M, t ∈ TM : Vt(φ) = 1 if ∀ψ ∈ Γ : Vt(ψ) = 1

Consequence is preservation of supertruth in all models under all supervaluations

(9)  φ ⇐⇒ ∅  φ

Validity is supertruth in all models under all supervaluations

2 Applications of LIT

• If we restricted ourselves to linear models, like M1, we would have |= [f]φ → [l][f]φ as
well as [f]φ |= [l][f]φ

•t1 // •t2 // •t3 // •t4

Fig. 1. M1: a linear model structure

• Both these facts seem to amount to determinism, which shouldn’t follow as a matter of
logic!

• To allow our tense logic to be indeterministic, LIT allows branching models like M2

•t2

φ

•t1

::tttttttttttt
//

¬φ •t3 //
¬φ •t4

¬φ

Fig. 2. M2: a branching model structure under some valuations

• M2 provides us with enough to show 1 [f]φ→ [l][f]φ

• In M2 there are two histories: h1 = {t1, t2} & h2 = {t1, t3, t4}
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◦ V h1
t1 ([f]φ) = 1, since t1 < t2 & V h1

t2 (φ) = 1 (By 6.4)

◦ V h1
t1 ([l][f]φ) = 0, because V h2

t1 ([f]φ) = 0 since @t ∈ h2 : t1 < t & V h2
t (φ) = 1 (By

6.4,6.6)

◦ So ∃h : V h
t1

([f]φ→ [l][f]φ) = 0, namely h1

I Therefore, Vt1(φ) is undefined (By 7) & so 1 [f]φ→ [l][f]φ (By 8)

• Interestingly: [f]φ  [l][f]φ
• Here’s what Thomason (1970) says about it (using our notation):

Here we have a case in which [material] implication differs from consequence; [l][f]φ is
a consequence of [f]φ but does not imply [f]φ. Intuitively this means that the argument
from [f]φ to [l][f]φ is a valid one, for if it is already true that a thing will come to be,
it is inevitable that it will come to be. But at the same time, it does not follow from
supposing that a thing will come to be that it will inevitably come to be. To suppose
that φ will be is to posit that we will be in a situation in which φ is true, that we will
follow history h in which φ is sooner or later satisfied. But this is quite different from
positing that such histories are the only alternatives now open; this would amount to
positing that φ is inevitable. In our semantic theory this difference between supposing
that φ will be and supposing that it is now true that φ will be is represented by the
difference between making [f]φ and antecedent of a [material] implication as in 6.5 and
making it a premise of the consequence relation as in 6.3.

• This sounds a lot like Aristotle when he maintains that what is necessarily is, when it is
while maintaining that some future contingents are gappy
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