05.02.08 #### WILLIAM B. STARR Dept. of Philosophy, Rutgers University 26 Nichol Ave. New Brunswick, NJ 08904 # 1 Overview of System A Malink (2006) develops an axiomatic term logic \mathcal{A} to formalize Aristotle's modal syllogistic • Three primitive types of predication relations between terms: - 1. Yab Accidental⁺ Predication - 2. Eab Substantial Essential Predication - 3. Eab Non-Substantial Essential Predication - Intended interpretation of Υab : either a is the definition of b, or a is a genus or accident of b; by (ax_{1-2}) Υ is reflexive and transitive - \triangleright Note that this makes Υab inclusive; it can be essential/necessary predication or genus/accidental predication - Intended interpretation of **E**ab: a is part of the definition or the genus of b within the category of substance (M06:97-8) (within?) - Intended interpretation of $\tilde{\mathbf{E}}ab$: a is the definition or genus of b within a category other than substance (M06:97-8) (within?) - Seven types of defined relations: | (| 1. | Σa | a Belongs to the Category of Substance | $\left(df_{1}\right)$ | |---|----|---------------------------|--|------------------------| | | 2. | $\mathbf{K}ab$ | Incompatible Substances | (df_2) | | | 3. | Πab | Two-Way Possible Predication | (df_3) | | | 4. | $\overline{\Pi}ab$ | Two-Way Possible or Accidental ⁺ Predication | (df_4) | | | 5. | $\widehat{\mathbf{E}}ab$ | Essential Predication Within Some Category | (df_5) | | | 6. | $\widehat{\Sigma}ab$ | Belongs to the Category of Substance or is Essentially Predicated of | (df_6) | | | 7. | $\overline{\mathbf{E}}ab$ | Substantial Predication or \boldsymbol{a} is a Substance and Accidentally Predicated | (df_7) | Email: wstarr@rutgers.edu. *URL:* http://eden.rutgers.edu/~wbstarr. - o (df_1) : if a is the subject of substantial essential predication, then a must be a substance - Four kinds of modal predication: - 1. $X^{a/e/i/o}ab$ Assertoric - 2. $\mathbb{N}^{\mathbf{a}/\mathbf{e}/\mathbf{i}/\mathbf{o}}ab$ Necessary - 3. Ma'e'i'o ab One-Way Possible - Q^{a/e/i/o}ab Two-Way Possible - Four combinations of quality and quantity: - \triangleright **a**: universal affirmative, All A are B - \triangleright e: universal negative, All A are not B - \triangleright **i**: particular affirmative, Some A are B - \triangleright o: particular negative, Some A are not B - o Examples: \circ (df₃): - $\triangleright \mathbb{X}^{\mathbf{a}}ab$: a applies to all b - \triangleright $\mathbb{N}^{\mathbf{a}}ab$: a necessarily applies to all b - $\triangleright \mathbb{M}^{\mathbf{a}}ab$: a may apply to all b - $\triangleright \mathbb{Q}^{\mathbf{a}}ab$: a may or may not apply to all b - The axioms induce an ordering on term-denotations that can be visualized with scheme described on p.104 05.02.08 ### REFERENCES 05.02.08 # 2 Syllogisms of Interest ## Barbara NAN (aaa-1-NXN) | A | N all E | 3 | $\mathbb{N}^{\mathbf{a}}ab$ | | $\widehat{\mathbf{E}}ab$ | | $\mathbf{E}ab \vee \widetilde{\mathbf{E}}ab$ | |----------------|-----------|---|-----------------------------|--------|--------------------------|---|--| | B | all (| 7 | $\mathbb{X}^{\mathbf{a}}bc$ | \iff | Υbc | $\stackrel{\text{(df}_5)}{\Longleftrightarrow}$ | Υbc | | \overline{A} | N all | 7 | $\mathbb{N}^{\mathbf{a}}ac$ | | $\widehat{\mathbf{E}}ac$ | | $\mathbf{E}ac \vee \widetilde{\mathbf{E}}ac$ | - This syllogism is valid in A; Theorem 18 (M06:124) - **Proof** (By Cases): Suppose $\mathbf{E}ab$. Premise two gives us $\mathbf{\Upsilon}bc$, so by $(\mathbf{a}\mathbf{x}_4)$ $\mathbf{E}ac$ and thus $\mathbf{\hat{E}}ac$. Alternatively, suppose $\mathbf{\tilde{E}}ab$. Premise two gives us $\mathbf{\Upsilon}bc$, so by $(\mathbf{a}\mathbf{x}_5)$ $\mathbf{\tilde{E}}ac$ and thus $\mathbf{\hat{E}}ac$. - What of the Theophrastian 'counterexample'? | Animal | N all | Man | | $\mathbb{N}^{\mathbf{a}}am$ | | $\mathbf{E}am \vee \mathbf{E}am$ | |--------|-------|--------|--------|--|---|---| | Man | all | Moving | \sim | $\mathbb{X}^{\mathbf{a}} mv$ | $\stackrel{\text{(df_5)}}{\Longleftrightarrow}$ | Υmv | | Animal | N all | Moving | | $\overline{\mathbb{N}^{\mathbf{a}}av}$ | | $\overline{\mathbf{E}av \vee \widetilde{\mathbf{E}}am}$ | - o Malink's (2006: 101-102) diagnosis: - ▷ The argument is valid but unsound (my interpretation of Malink's remarks) - ► Animal is part of the definition or genus of Man within the category of substance - \blacktriangleright Hence $\mathbf{E}am$ is true and $\widetilde{\mathbf{E}}am$ false - ▶ By (df_1) , Σm - ▶ Malink (2006: 101) shows that: $$\vdash_{\mathcal{A}} \Sigma a \wedge \Upsilon ab \supset \Sigma b$$ - \blacktriangleright This, with our last result and the minor premise implies Σv - \blacktriangleright However, *Moving* is a non-substance term so on any adequate model of $\mathcal A$ this would be false - ▶ So both premises cannot be true simultaneously! - \triangleright But wait, does this mean that Υmv is false whenever $\mathbb{N}^{\mathbf{a}}am$ is true? - ▶ Yes!, says Malink - ▶ But how could *Animal* necessarily applying to all *Man* imply that *Man* does not apply to all *Moving*? - ► Firstly, this does not amount to saying that the major premise implies that some moving thing is not human - ightharpoonup Although it is a necessary condition of Υmv that each moving thing be human, it is not all there is to its truth for Aristotle - ► Substance terms can be universally affirmatively predicated only of their substantial subspecies - ▶ Since Moving is not a substantial subspecies of Man, the Man cannot be universally affirmatively predicated of Moving, which is required for the truth of Υmv - ▶ Malink calls predications of substance terms of non-substantial or non-subspecies terms unnatural predications - ▶ He (M06:102) suggests that Aristotle only prohibits universal affirmative unnatural predications in his modal syllogistic, but not the other quality/quantity combos - Discuss Aristotle's motivations for prohibiting premises with unnatural predication ### Barbara ANN (aaa-1-XNN) • This syllogism is invalid in A; Theorem 51 (M06:131) # References MALINK, M. (2006). 'A Reconstruction of Aristotle's Modal Syllogistic'. History and Philosophy of Logic, 27: 95–141. 3