

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 1/30

The Data The Formal System Criticism Conditional Questions

The Question

- a. If Alle dances, will Bill dance? (1)
 - b. Yes
 - c. No
 - **d**. Alle won't dance

The Questions

- Is (1d) a semantic answer of some sort?
- What exactly do the positive & negative answers mean?

The Players

- Hulstijn, Velissaratou, Groenendijk: yes
- Isaacs & Rawlins: no

The Data The Formal System Criticism Tripartitions

$\phi \wedge \psi$ $\phi \wedge \neg \psi$

• Complete answers:

Prediction:

- a. If Alle dances, will Bill dance? (1)
 - **b**. Yes (= Alle will dance and Bill will dance)
 - c. No (= Alle will dance and Bill won't dance)
 - d. Alle won't dance

- Let ψ be a polar question
- $\phi \rightarrow ?\psi$ generates a tripartition
- First, divide the ϕ and $\neg \phi$ worlds

2/39

- Then, among the ϕ worlds, divide the ψ and $\neg \psi$ worlds
- $\phi \wedge \psi \qquad \phi \wedge \neg \psi$ $\neg \phi$

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ.

Against Tripartitions Isaacs & Rawlins on Tripartitions

Tripartition Prediction

- (1) **a**. If Alle dances, will Bill dance?
 - b. Yes (= Alle will dance and Bill will dance)
 - c. No (= Alle will dance and Bill won't dance)
 - d. Alle won't dance
 - Strongest criticism: (1b) and (1c) seem to strong
 - Answering *Yes* to a conditional question does not intuitively commit me to the truth of the antecedent
 - Neither does No
 - I&R offer others, but they less clearly target the core of the tripartition approach

The Data The Formal System Criticism

Dropping Mutual Exclusivity Groenendijk, Mascarenhas & Velissaratou

- Questions denote a set of exhaustive alternatives, which may not be mutually exclusive
- Each alternative is an answer
- With $\phi \rightarrow ?\psi$ alternatives **do** overlap
- Asserting ¬φ eliminates worlds where the alternatives differ, so it dispels the question

Non-Exclusive Prediction

- (1) a. If Alle dances, will Bill dance?
 - b. Yes (= If Alle dances, Bill will dance)
 - c. No (= If Alle dances, Bill won't dance)
 - d. Alle won't dance (Consequent question is dispelled)

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 8/39

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 7/3

The Data The Formal System Criticism

Against Dropping Mutual Exclusivity Isaacs & Rawlins on Subjunctive Conditional Questions

- (2) a. If Jo could have fixed the car, would you have kept on using it?
 - ${\sf b}.$ Jo couldn't have fixed the car
 - c. Jo could have fixed the car (I&R:280)
 - Unlike in (1), the denial of the antecedent (2b) does not dispel the issue raised in the consequent
 - Yet, in (2c), the assertion of the antecedent does dispel the issue

The Data The Formal System Criticism

Against Dropping Mutual Exclusivity Isaacs & Rawlins on Subjunctive Conditional Questions

- (2) a. If Jo could have fixed the car, would you have kept on using it?
 - ${\sf b}.$ Jo couldn't have fixed the car (Issue not dispelled)
 - c. Jo could have fixed the car (Issue dispelled) (I&R:280)
 - (2c) requires the alternatives to overlap on all ϕ -worlds
 - But these are the worlds that need to be 'split up' by the consequent question!
 - If this is right, the overlapping alternatives approach is in trouble

Against Dropping Mutual Exclusivity Isaacs & Rawlins on The Meaning of Yes & No

Non-Exclusive Prediction

- (1) **a.** If Alle dances, will Bill dance?
 - **b**. Yes (= If Alle dances, Bill will dance)
 - c. No (= If Alle dances, Bill won't dance)
 - d. Alle won't dance (Consequent question is dispelled)
 - How do the meanings of *yes* & *no* come out as conditional?
 - Evidently, *yes* picks up one alternative, which happens to be a conditional alternative, and *no* picks up the other alternative

The Data The Formal System Criticism

Against Dropping Mutual Exclusivity Isaacs & Rawlins on The Meaning of Yes & No

- (3) a. If Alfonso comes, will Joanna be mad?
 - b. Yes, she will
 - c. Yes, if he comes, she will be mad

I&R's Challenge ($\S3.2.3$)

• "If what *yes* means is the same thing as response [(3c)], then it is not clear why the continuation [(3b)], without the *if*-clause, should be possible" (p.282)

A Response

- Yes always picks out the $\phi \to \psi$ alternative
- There are two ways of specifying that alternative
 - With a modally subordinated & anaphoric will: (3b)
 - With a conditional that makes explicit what the first builds in with modal anaphora: (3c)

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 12/39

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 11/39

The Data The Formal System Criticism

Denial of the Antecedent Co-varies with Presupposition Denial

I&R's Claim

Denying or asserting the antecedent of a CQ is felicitous and issue dispelling iff it rejects the conditional's presupposition

- (4) If Alle danced, Bill danced
- (5) If Alle could have danced, Bill would have danced

Their Premises

- (4) presupposes that the antecedent is possible
 - Denying the antecedent of the CQ version of (4) is felicitous, and rejects presupposition

The Data The Formal System Criticism

Denial of the Antecedent Co-varies with Presupposition Denial

Í&R's Claim

Denying or asserting the antecedent of a CQ is felicitous and issue dispelling iff it rejects the conditional's presupposition

- (4) If Alle danced, Bill danced
- (5) If Alle could have danced, Bill would have danced

Their Premises

- (5) presupposes that the antecedent is impossible
 - Denying the antecedent of the CQ version of (5) is not felicitous, but doesn't reject presupposition
 - Asserting the antecedent of the CQ version of (5) rejects presupposition & dispels issue

Presupposition Denial It's Discourse Effects

- I&R take their claim to suggest that denial of the antecedent responses are actually instances of presupposition denial
- The discourse effect of dispelling issues is due to the fact that presupposition denial requires 'rewinding' the context to an earlier state
- This 'nullifies' any assertions or questions that depended on the presupposition
- However, this whole process is purely pragmatic, although the semantics and formalism should be capable of being integrated with this kind of description

The Data The Formal System Criticism

Some Reservations Presupposition

- Not all counterfactual conditionals presuppose the impossibility of their antecedent (Anderson, Peters):
 - (6) X: Kennedy was shot by a lone gunman
 - Y: Kennedy was shot by two gunmen
 - Z: Look, if two gunmen had shot Kennedy, then two guns would have been found. So, let's find out how many guns were in fact found.
 - Z': Look, if two gunmen shot Kennedy, then two guns must have been found. So, let's find out how many guns were in fact found.
- This significantly complicates things for I&R

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 17/39

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 16/39

The Data The Formal System Criticism

The Basics A Simple Logic

- Ordinary propositional logic w/ \neg and \land as primitive
- Add three new bits:
 - A question operator: ?
 - **2** An assertion operator: \triangle
 - **3** A conditional operator: $(if \cdot)(\cdot)$
- Formulas are assigned truth-values relative to a world and a context
- Contexts are equivalence relations on Ω :
 - If $\langle w, w' \rangle \in c$, then w, w' are candidate actual worlds
 - If $\langle w, w' \rangle \in c$, then $w \And w'$ give identical answers to open issues

The Data The Formal System Criticism

The Basics Context Update

- D4.1 describes how declaratives update context
 - Keep a pair iff ϕ is true in both worlds
- D4.2 describes how questions update context
 - Keep a pair iff ϕ has the same truth value in each of the worlds
- Since c is an equivalence relation, D4.2 has the effect of inducing a partition
 - A polar question ?φ, divides c into the worlds that make φ false and the worlds that make φ true

• But, contexts aren't enough for I&R

• They are tuples that store multiple contexts

• The top context is the one for current discourse

• They also need macro-contexts

• These are defined in **D3.2**

The Data The Formal System Criticism

The Basics Macro-Contexts: How They're Used

- Conditionals & modal subordination generate new contexts
 - See **D5.4**
- Consequents/modal elaborations refine these contexts
 - See **D5.5**
- But, what happens in these contexts doesn't always stay in these contexts
 - If the consequent of a conditional is an assertion, information will **percolate** to lower contexts
 - See **D5.2**

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 22/39

The Data The Formal System Criticism

The Basics Macro-Contexts: How They're Used

- Once modal elaboration ceases, derived contexts are discarded
 - We return to the next lowest context
- I&R's idea about antecedent denial:
 - It signals that elaboration has ceased, since it is incompatible with the current derived context
 - So we return to the pre-conditional question context
 - Thus, we need not address the consequent question
- Real answers continue the elaboration and are interpreted in the derived context
 - This saves mutual exclusivity

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 23/39

The Data The Formal System Criticism Percolation Intuitively

- \vdash $(c, c', c' \oplus \phi)$ is: the information compatible with learning in c that c' has been updated with ϕ
- Intuitively, these are the possibilities that:
 - Are in c but have been supposed 'out of the way' in c'
 - Are in both c and $c' \oplus \phi$
- That is: $(c c') \cup (c \cap c'')$
- But, recall that contexts are pairs of worlds, so we must define '-' with care

Percolation An Example

Fact 1.1
$$\vdash (\Omega^2, c_a, c_a \oplus b) = c_1$$

= $\begin{cases} 00, 00 & 00, 01 \\ 01, 00 & 01, 01 \\ 11, 11 \end{cases}$

How do you find c_1 ? (Use D5.1!)

- Look at each ⟨w, w'⟩ ∈ Ω², evaluate 2 conditionals:
 a. If ∀z ∈ Ω: ⟨w, z⟩ ∉ c_a & ⟨z, w'⟩ ∉ c_a, ⟨w, w'⟩ ∈ c₁
 - **b**. If $\langle w, w' \rangle \in c_{\mathsf{a}} \oplus \mathsf{b}$, then $\langle w, w' \rangle \in c_1$

Otherwise, $\langle w, w' \rangle \notin c_1$

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 27/39

Note: Ovals are macro-contexts, circles are contexts Contexts are represented as the set of worlds in at least one of its pairs Running Through the Definitions

If Alle dances, Bill dances $\rightsquigarrow ((if a) \triangle b)$

- $s^{0}[((\mathsf{if}\,\mathsf{a})\,\triangle\mathsf{b})] = s^{0}[(\mathsf{if}\,\mathsf{a})][\triangle\mathsf{b}] \tag{D5.5}$
 - $= \operatorname{PUSH}(s^0, s^0_0 \oplus \mathsf{a})[\triangle \mathsf{b}] \tag{D5.4}$
 - $= \operatorname{PUSH}(s^0, \Omega^2 \oplus \mathsf{a})[\triangle \mathsf{b}] \tag{D3.2d}$

$$= PUSH(s^0, c_a)[\triangle b]$$
(D6c_a)

$$=\underbrace{\langle c_{\mathsf{a}}, s^0 \rangle}_{s^1} [\triangle \mathsf{b}] \tag{D3.3}$$

$$= \langle \vdash (s_0^1, s_0^1, s_0^1 \oplus \mathsf{b}), \langle \vdash (s_1^1, s_0^1, s_0^1 \oplus \mathsf{b}), \langle \rangle \rangle \rangle$$

$$= \langle \vdash (c_{\mathsf{a}}, c_{\mathsf{a}}, c_{\mathsf{a}} \oplus \mathsf{b}), \langle \vdash (\Omega^2, c_{\mathsf{a}}, c_{\mathsf{a}} \oplus \mathsf{b}), \langle \rangle \rangle \rangle$$

$$= \langle \{(11, 11)\}, \langle \vdash (\Omega^2, c_{\mathsf{a}}, c_{\mathsf{a}} \oplus \mathsf{b}), \langle \rangle \rangle \rangle$$
(D5.1)

$$\langle \{(11,11)\}, \langle c_1, \langle \rangle \rangle \rangle$$
 (Fact 1.1

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 29/39

The Data The Formal System Criticism A Conditional Question Running Through the Definitions

=

 $=: s^{2}$

If Alle dances, will Bill dance? \rightsquigarrow ((if a) ?b)

$$s^{0}[((if a) ?b)] = s^{0}[(if a)][?b]$$
(D5.5)
$$= \langle c_{a}, s^{0} \rangle [?b]$$
(Prev. Ex.)
$$= \langle c_{a} \otimes b, s^{0} \rangle$$
(D5.3)
$$= \langle \{(10, 10), (11, 11)\}, s^{0} \rangle$$
(D4.2)
$$=: s^{3}$$

The Data The Formal System Criticism

A Conditional Question

Note: Ovals are macro-contexts, circles are contexts Contexts are represented as the set of worlds in at least one of its pairs

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 33/39

The Data The Formal System Criticism

Answering A Conditional Question

- (1) a. If Alle dances, will Bill dance?
 - b. Yes
 - c. No
 - d. Alle won't dance

$$\begin{split} s^{0}[(1a')][(1b')] &= s^{3}[\triangle \mathbf{b}] \\ &= \langle \{(10, 10), (11, 11)\}, \langle \Omega^{2}, \langle \rangle \rangle \rangle [\triangle \mathbf{b}] & (\mathbf{D}6.s^{3}, s^{0}) \\ &= \langle \vdash (s^{3}_{0}, s^{3}_{0}, s^{3}_{0} \oplus \mathbf{b}), \langle \vdash (s^{3}_{1}, s^{3}_{0}, s^{3}_{0} \oplus \mathbf{b}), \langle \rangle \rangle \rangle & (\mathbf{D}5.2) \\ &= \langle \{(11, 11)\}, \langle \vdash (\Omega^{2}, s^{3}_{0}, \{(11, 11)\}), \langle \rangle \rangle \rangle & (\mathbf{D}5.1, \mathbf{D}6.s^{3}) \\ &= \langle \{(11, 11)\}, \langle c_{1}, \langle \rangle \rangle \rangle & (\mathbf{D}5.1, \mathbf{D}6.s^{3}) \\ &= s^{2} & (\mathbf{D}6.s^{2}) \\ &= s^{0}[(\mathsf{if} \mathsf{a}) \triangle \mathsf{b}] \end{split}$$

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 34/39

The Data The Formal System Criticism

Answering A Conditional Question The Second Way

- (1) **a**. If Alle dances, will Bill dance?
 - b. Yes
 - c. No
 - $\mathsf{d}.$ Alle won't dance

$s^0[(1a')][(1c')] = s^3[\triangle \neg \mathsf{b}]$

$$= \langle \{ (10, 10), (11, 11) \}, \langle \Omega^2, \langle \rangle \rangle \rangle [\triangle \neg \mathbf{b}]$$
(D6.s³, s⁰)
$$= \langle \vdash (s_0^3, s_0^3, s_0^3 \oplus \neg \mathbf{b}), \langle \vdash (s_1^3, s_0^3, s_0^3 \oplus \neg \mathbf{b}), \langle \rangle \rangle \rangle$$
(D5.2)
$$= \langle \{ (10, 10) \}, \langle \vdash (\Omega^2, s_0^3, \{ (10, 10) \}), \langle \rangle \rangle \rangle$$
(D5.1, D6.s³)
$$= \langle \{ (10, 10) \}, \langle c_2, \langle \rangle \rangle \rangle$$
(D5.1, D6.s³)

 $c_2 := \left\{ \begin{array}{c} 00,00 & 00,01 \\ 01,00 & 01,01 & 10,10 \end{array} \right\}$

The Data The Formal System Criticism

Responding to A Conditional Question The Third Way

- (1) **a**. If Alle dances, will Bill dance?
 - b. Yes
 - c. No
 - d. Alle won't dance

 $s^0[(1a')][(1d')] = s^3[\triangle \neg \mathsf{a}]$

$$= \langle \{(10, 10), (11, 11)\}, \langle \Omega^2, \langle \rangle \rangle \rangle [\triangle \neg \mathsf{a}]$$

$$= \langle \vdash (s_0^3, s_0^3, s_0^3 \oplus \neg \mathsf{a}), \langle \vdash (s_1^3, s_0^3, s_0^3 \oplus \neg \mathsf{a}), \langle \rangle \rangle \rangle$$

$$= \langle \emptyset, \langle \vdash (\Omega^2, s_0^3, \emptyset), \langle \rangle \rangle \rangle$$

$$= \langle \vdash (\Omega^2, s_0^3, \emptyset), \langle \rangle \rangle$$

$$= \langle \left\{ \begin{array}{c} 00, 00 & 00, 01 \\ 01, 01 & 01, 01 \end{array} \right\}, \langle \rangle \right\}$$

$$(D5.1)$$

$$(D5.1)$$

Or maybe we set the output state to $POP(s^3) = s^0$ when we get a \emptyset context?

The Data The Formal System Criticism Modal Subordination It Isn't Context Copying

- (7) **a**. If you go to the store, buy beans
 - John is really hungry, so you would need to buy lots of them
 - The temporary contexts view has (7a) generate a you-going-to-the-store context, in which the consequent is asserted
 - At (7b) we hit an assertion about the actual world, so the temporary context is discarded
 - But then how do we resolve the anaphora to the beans in the second half of (7b) and how do we capture the fact that it is the elaboration of a scenario introduced in (7a)?

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 38/39

The Data The Formal System Criticism

Modal Subordination It Isn't Context Copying

- As argued extensively in Stone's "The Anaphoric Parallel between Modality and Tense", the temporary context approach to modal subordination cannot capture the robust anaphoric parallels between modality and tense
- An alternative approach is developed there which exploits functional types
- Brasoveanu has also extended van den Berg's treatment of quantificational dependencies to account for the modal dependencies involved in modal subordination
- It seems worthwhile considering how these tools might change an analysis of CQs like I&R's

William Starr | Isaacs and Rawlins on Conditional Questions | Speech Acts Seminar (Fall 2008, M. Bittner) | Rutgers Univ. 39/39