Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Outline

Expressing May and Must

Dynamic Semantics at Work

William Starr

Cornell University Sage School of Philosophy will.starr@cornell.edu http://williamstarr.net

December 27, 2011

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

The Role of Information In Inquiry and Conversation

- Informational contents (*propositions*) are sets of possible worlds
 - These sets distinguish ways world might be (worlds in the set) from ways it isn't (worlds excluded from set)
- One informational content is particularly useful for understanding how linguistic interactions unfold:

Contextual Possibilities (c)

As communication and inquiry unfold, a body of information accumulates. Think of this information as what the agents are mutually taking for granted in some way. I call the set of worlds embodying this information c, short for *contextual possibilities*. (Stalnaker 1978; Lewis 1979)

1 Free Choice and Two Views of Semantics

2 Dynamic Preference Semantics

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

0/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

Gaining Information And Eliminating Possibilities

Figure: Accepting the information that A

- Inquiry progresses by using information to eliminate uncertainty, i.e. the elimination of worlds.
- $\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}}\} \Rightarrow \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}\}$

ree Choice and Two Views of Semantics Dynamic Preference Semantics Reference

Question

How are Semantics and Information Change Related?

Classical Picture

- **1** Semantics: pair sentences w/propositions
 - $\llbracket \phi \rrbracket$ is a set of worlds
- **2 Pragmatics**: rules for rational agents
 - When presented with information, rational agents use it to eliminate possibilities (update using intersection)
- The Point Semantics specifies informational content of a sentence, but nothing in particular about how sentence changes contextual information (c)
 - Instead, pragmatics says how the sentence's content impacts $c: c \cap \llbracket \phi \rrbracket$

|--|

3/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

Two Important Consequences Of the Classical Approach

Fact 1: $\diamondsuit A \vDash \diamondsuit A \lor \diamondsuit B$

- Consequence is content inclusion:
 - $[\diamond A] \subseteq [\diamond A \lor \diamond B]$
- Disjunction is union:
 - $\bullet \ \llbracket \diamondsuit A \rrbracket \subseteq \llbracket \diamondsuit A \rrbracket \cup \llbracket \diamondsuit B \rrbracket$

Fact 2: $\diamond A \lor \diamond B \nvDash \diamond A$

- This would require:
 - $[\![\diamondsuit A]\!] \cup [\![\diamondsuit B]\!] \subseteq [\![\diamondsuit A]\!]$
 - But this only holds when $[\![\diamondsuit \mathsf{B}]\!] = \emptyset$

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

The Classical Picture

Classical Possible Worlds Semantics

- $\blacksquare \ [[A]] = \{ w \mid w(A) = 1 \}$
- $\left[\neg \phi \right] = W \left[\phi \right]$

- - Acc(w) is the set of worlds accessible from w

Classical Truth and Consequence

Truth $w \models \phi \iff w \in \llbracket \phi \rrbracket$ Consequence $\phi \models \psi \iff \llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

4/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References The First Problem of Free Choice Kamp (1973) and Ross (1941)

- (1) Billy may go to the beach
 - Best classical approximation of May: some species of \diamondsuit
 - May B [?] = ◇B

Problem: May B does not entail May B ∨ May C

- X: Billy may go to the beach
- Y: Ah, so Billy may go to the beach, or Billy may go the cinema $\times \times$

Why is this a problem?

• Fact 1: $\diamondsuit B \vDash \diamondsuit B \lor \diamondsuit C$

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

The Second Problem of Free Choice Kamp (1973)

(2) Billy may go to the beach or he may go to the cinema

Problem: May B v May C **does** entail May B

- X: Billy may go to the beach or he may go to the cinema
- Y: Ah, so Billy may go to the beach \checkmark
- Indeed: $May B \lor May C$ entails $May B \land May C$

Why is this a problem?

- Fact 2: $\diamond A \lor \diamond B \neq \diamond A$
- So there are at least two problems for classical approach to *may*

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

7/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Question

How are Semantics and Information Change Related?

Classical Picture

- **1** Semantics: pair sentences w/propositions
 - $[\![\phi]\!]$ is a set of worlds
- **2 Pragmatics**: rules for rational agents
 - When presented with information, rational agents use it to eliminate possibilities (update using intersection)

Dynamic Picture (Veltman, Heim)

- **1** Semantics: pair sentences with ways of changing contexts
 - ϕ eliminates worlds from c
- **2 Pragmatics**: mechanisms for additional changes
 - General rationality, theory of mind, etc.

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Tentative Diagnosis The Performative Function of May

- A pragmatic approach...
 - Competence with a word is involved, so a semantic approach is preferable
 - Also, classical pragmatics assumes (declarative) sentences denote propositions
 - $\bullet\,$ Proposition gets intersected with c
 - May A shouldn't change c, but rather Acc
 - This operation can't be intersection (sphere of accessibility should grow w/permission)
 - $\bullet\,$ This would also require $\mathsf{May}\,\mathsf{A}$ to denote an accessibility relation
 - So many problems w/this
- Alternative: approach to semantics that can directly encode (features of) communicative function of a word

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

The Dynamic Picture In More Detail

The Basic Idea

Assign each ϕ a function $[\phi]$ encoding how it changes c: $c[\phi] = c'$ (Better notation: $[\phi](c) = c'$)

Dynamic Informational Semantics

- **1** $c[A] = \{w \in c \mid w(A) = 1\}$
- **2** $c[\neg \phi] = c c[\phi]$
- **3** $c[\phi \land \psi] = (c[\phi])[\psi]$
- $c[\phi \lor \psi] = c[\phi] \cup c[\psi]$
- **5** $c[\diamondsuit \phi] = \{w \mid \exists w' : w' \in Acc(w) \& w' \in c[\phi]\}$
 - Veltman (1996): for epistemic might, Acc(w) is c

Support, Consequence (Veltman)
• $c \models \phi \iff c[\phi] = c$
• $\phi_1, \ldots, \phi_n \models \psi \iff \forall c : c[\phi_1] \cdots [\phi_n] \models \psi$

Truth, Propositions (Starr)

 $w \vDash \phi \iff \{w\} [\phi] = \{w\} \qquad \llbracket \phi \rrbracket = \{w \mid w \vDash \phi\}$

Classical Consequence (Starr)

 $\phi_1,\ldots,\phi_n\vDash\psi\iff\forall w:\{w\}[\phi_1]\cdots[\phi_n]\vDash\psi$

- Classical logic is the logic of perfect information
- Equivalent to standard \models for modal free fragment

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

11/43

13/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference Illustrating Our Surprise

 $\diamond A$ is false unless A is true and $Acc(w) = \{w\}$

- Recall $w \in [A] \iff \{w\}[A] = \{w\}$
- Consider whether $w_{\mathsf{A}} \in \llbracket \diamondsuit \mathsf{A} \rrbracket$:

$$\{w_{\mathsf{A}}\}[\diamondsuit\mathsf{A}] = \{w \mid \exists w' : w' \in Acc(w) \& w' \in \{w_{\mathsf{A}}\}[\mathsf{A}]\}$$
$$= \{w \mid w_{\mathsf{A}} \in Acc(w)\}$$

- Unless $Acc(w_A) = \{w_A\}, \{w_A\}[\diamondsuit A] \neq \{w_A\}$
- Consider whether $w_a \in [\![\diamondsuit A]\!]$

$$\{w_{\mathsf{a}}\}[\diamondsuit\mathsf{A}] = \{w \mid \exists w' : w' \in Acc(w) \& w' \in \{w_{\mathsf{a}}\}[\mathsf{A}]\}$$
$$= \{w \mid \exists w' : w' \in Acc(w) \& w' \in \emptyset\}$$
$$= \emptyset$$

• Nope! So $[\diamond A] \subseteq [A]$

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

Dynamic Informational Semantics Understanding Classical vs. Dynamic Semantics

Corollary (Boolean Equivalence)

- **1** $[[A]] = \{w \mid w(A) = 1\}$
- $\left[\left[\neg \phi \right] \right] = W \left[\left[\phi \right] \right]$

- Booleans behave classically
- Boolean fragment: \vDash and \vDash are identical
 - It's only with modals that \vDash and \vDash come apart
- Surprise: $w \notin [\diamondsuit \phi]$ unless $Acc(w) = \{w\}$ and $w \in [\phi]$
- Then $[\![\diamondsuit\phi]\!]\subseteq [\![\phi]\!]$ and so $\diamondsuit\phi\vDash\phi$
 - Yet $\Diamond \phi \models \phi$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

12/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Classical Logic as Logic of Omniscience A Logic of Omniscience is Not Suited for Modality

d'Alembert (1751) on Truth

"The universe... would only be one fact and one great truth for whoever knew how to embrace it from a single point of view." (d'Alembert 1995: 29)

- A sentence is true iff it corresponds w/'the great truth'
 - Correspond: cohere w/the great truth, $\{w\}[\phi] = \{w\}$
- But modal sentences are indexical to **uncertainty** or **utilities** of agent(s) evaluating them
- Whether they cohere with the great truth is irrelevant
- We want an evaluative concept that targets how they cohere with partial information: c[φ] = c (support)

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Dynamic Informational Semantics Back to Free Choice

- This system is quite useful for epistemic modals
 - $A \land \Diamond \neg A$ is inconsistent (cf. Veltman and Yalcin)
 - $\diamond \phi$ can add possibilities to c
 - Not possible to get with $c \cap \llbracket \diamondsuit \phi \rrbracket$
- But it does not solve the problem of free choice:
 - $\bullet ~ \diamondsuit \phi \Vdash \diamondsuit \phi \lor \diamondsuit \psi$
 - $\bullet ~ \diamondsuit \phi \lor \diamondsuit \psi \Vdash \diamondsuit \phi$
- However, it is the backbone of a system that does:
 - may's meaning resides in how it changes context
 - Use of \models rather than \models

Basic Idea

Capture the non-informational impact of may by sophisticating the contexts sentences operate on

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

15/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References Preference, Rationality & Context Issues

- It's not just information that accumulates in communication and inquiry (Bromberger 1966)
- There are issues (e.g. Hamblin 1958; Roberts 1996).
- They can be thought of as ways of grouping worlds in *c* into competing alternative propositions.

Alternatives (\overline{C}) (e.g. Groenendijk 1999)

Alternatives represent open, competing propositions the agents are concerned with deciding between; their **issues**. Formally, this grouping of c may be identified with a set of sets of worlds; call it C. There is no need to also keep track of c: it is just the union of all the alternatives in C.

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context Information and the Process of Inquiry

Figure: Accepting the information that A

- Inquiry progresses by gaining information, i.e. the elimination of worlds.
- $\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}}\} \Rightarrow \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}\}$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics References Preference, Rationality & Context Issues and Inquiry

Figure: Recognizing the issue whether A

- Inquiry also progresses by recognizing issues, i.e. introducing alternatives
- $\{\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}}\}\} \Rightarrow \{\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}\}, \{w_{\mathsf{aB}}, w_{\mathsf{ab}}\}\}$

17/43

ree Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context

- Agents not only gather information and identify competing alternatives, they form **preferences** regarding those alternatives
- Central to **decision theoretic** approaches to rational choice, as applied in philosophy, AI and economics (e.g. Ramsey 1931; Newell 1992)
- Of relevance here: the preferences being mutually taken for granted for the purposes of an interaction
 - Parallel to Stalnaker's common ground

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context Preferences

- A body of preferences can be represented as a binary **preference relation** on the alternatives
- I.e. a set of pairs of propositions constructed from c

Preference State (R)

- R: binary relation on alternatives (open propositions)
- R(a, a'): a is preferred to a'
- Each pair in R is called a *preference*
- Set of (non-empty) alternatives over which R is defined: issues at stake in R, C_R
- Set of worlds among those alternatives: the contextual possibilities written c_R

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics References Preference, Rationality & Context Information in a Preference State

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Figure: Accepting the information that A

- $\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{b}}\} \Rightarrow \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}\}$
- { $\langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{b}} \}, \emptyset \rangle \} \Rightarrow \{ \langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}} \}, \emptyset \rangle \}$

Free Choice and Two Views of Semantics Dynamic Preference Semantics References Preference, Rationality & Context Issues in a Preference State

Figure: Recognizing the issue whether A

- $\{\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}}\}\} \Rightarrow \{\{w_{\mathsf{AB}}, w_{\mathsf{Ab}}\}, \{w_{\mathsf{aB}}, w_{\mathsf{ab}}\}\}$
- $\{\langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}} \}, \emptyset \rangle \}$
 - $\Rightarrow \{ \langle \{ w_{\mathsf{AB}}, w_{\mathsf{Ab}} \}, \varnothing \rangle, \langle \{ w_{\mathsf{aB}}, w_{\mathsf{ab}} \}, \varnothing \rangle \}$

19/43

ree Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context

Figure: Coming to prefer A (to \neg A)

• { $\langle \{w_{AB}, w_{Ab}, w_{aB}, w_{ab}\}, \emptyset \rangle$ } $\Rightarrow \{ \langle \{w_{AB}, w_{Ab}\}, \{w_{aB}, w_{ab}\} \rangle$ }

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context Using Preference to Make Rational Choices

- Given preference relation, which alternatives are best?
- How do you use preferences to decide what to do?
- In decision theory, this takes the form of defining a choice function (Hansson & Grüne-Yanoff 2009)
- A choice function Ch maps a preference state R to the set of best alternatives according to R

Proposal: Choice, Permission, Requirement

- **1** Ch(R) are the alternatives permissible according to R
- **2** Required by R: unique alternative permitted by R
 - Not always the case!

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context Preference and Inquiry

Figure: A more complex preference involving A and B

 $\{ \langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}} \}, \{w_{\mathsf{aB}}, w_{\mathsf{ab}} \} \rangle, \langle \{w_{\mathsf{AB}}, w_{\mathsf{aB}} \}, \{w_{\mathsf{Ab}}, w_{\mathsf{ab}} \} \rangle \}$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

24/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context The Choice Function: Logical Weak Dominance

Which Alternatives are Best?

- **1** Competition between **preferred alternatives** P(R)
 - Left member in some pair
- 2 If preferred alternative *a* is entailed another preferred one, then *a* is out
- $\$ If a entails a dispreferred alternative, a is out

Choice: Formally

 $Ch(R) = \{a \in P(R) \mid \nexists a' \in P(R) : a' \subset a$

 $\& \ \nexists a' \in D(R) : a \subseteq a' \}$

[D(R): dispreferred alternatives]

ree Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context How Choice Works: An Example

Figure: Preference for A with (separate) preference for B

- { ({ w_{AB}, w_{Ab} }, { w_{aB}, w_{ab} }), ({ w_{AB}, w_{aB} }, { w_{Ab}, w_{ab} })
- Two **preferred** (warm) alternatives, orange and yellow
- Neither entails the other nor dispreferred (cold) alt.
- So $Ch(R) = \{\{w_{AB}, w_{Ab}\}, \{w_{AB}, w_{aB}\}\}$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

The Semantics: in brief

- Dynamic Meaning: function from contents to contents
 - Now contents are preference states
- $R[\phi] = R'$: R' is the result of applying ϕ to R

The Basics

- **1** May ϕ tests that ϕ is consistent w/some $a \in Ch(R)$
 - If so, a preference for ϕ is added to R
 - This doesn't guarantee that ϕ will become Ch(R)
 - Otherwise: fail, i.e. return $\{\langle \emptyset, \emptyset \rangle\}$
- **2** Disjunction unions separate updates
- **3** Conjunction sequences updates

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

Preference, Rationality & Context How Choice Works: A More Complex Example

- 4 pref. alt's: yellow, orange, reds
- Yellow is out: reds entail it
- Orange is out: top red entails it
- Bottom red is out: it entails blue, which is a dispreferred alt
- Unique best alternative: top red
- $A \land B$ is required

Figure: Pref A and B

$$\begin{split} \{ \langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}}, w_{\mathsf{aB}}, w_{\mathsf{ab}} \}, \emptyset \rangle, \langle \{w_{\mathsf{AB}}, w_{\mathsf{Ab}} \}, \{w_{\mathsf{aB}}, w_{\mathsf{ab}} \} \rangle, \\ \langle \{w_{\mathsf{AB}} \}, \{w_{\mathsf{Ab}} \} \rangle, \langle \{w_{\mathsf{aB}} \}, \{w_{\mathsf{ab}} \} \rangle, \\ \langle \{w_{\mathsf{AB}}, w_{\mathsf{aB}} \}, \{w_{\mathsf{Ab}}, w_{\mathsf{ab}} \} \rangle \} \end{split}$$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

28/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

The Semantics Applied How May Works: An Example

Figure: R_0 to R_0 [May B]

- $\bullet\,$ The best alternative (orange) is consistent w/B
- $\bullet\,$ A preference and permission for ${\sf B}$ are introduced
- But a requirement for B is not

Modal Disjunction Intro is Invalid!

- Figure: R_0 to R_0 [May B] = R_0 [May A \lor May B] • May $A \models May A \lor May B$ means:
- $Ch(R_0[May A]) = Ch(R_0[May A][May A \lor May B])$ $Ch(R_0) = Ch(R_0[Mav B])$
- But yellow is in $Ch(R_0[May B])$, and not $Ch(R_0)$
- So May A \models May A \lor May B!

Free Choice and Two Views of Semantics Dynamic Preference Semantics

Support, Consequence (Veltman)

- $c \models \phi \iff c[\phi] = c$
- $\phi_1, \ldots, \phi_n \models \psi \iff \forall c : c[\phi_1] \cdots [\phi_n] \models \psi$

Preferential Support, Consequence (Starr)

- $R \models \phi \iff Ch(R) = Ch(R[\phi])$
- $\phi_1, \ldots, \phi_n \models \psi \iff \forall R : R[\phi_1] \cdots [\phi_n] \models \psi$
- Both kinds of consequence and support are useful
- The first when tracking information
- The second when tracking the best alternatives

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

32/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

The Second Problem of Free Choice From Disjunction to Conjunction

• Disjunctions are felicitous only when each disjunct compatible w/context (Stalnaker 1975: §III)

• If $\phi \lor \psi$ is appropriate: $R[\phi] \neq \{\langle \emptyset, \emptyset \rangle\} \neq R[\psi]$

- What happens when ϕ is May A?
- If May A is compatible w/context then context passes its test and may adds preference for A
 - So R[May A] will be R plus a preference for A
- Same holds if ψ is May B
- Since $R[May A \lor May B] = R[May A] \cup R[May B]$:
 - Resulting state will have pref for A and for B and both will be consistent with best alternatives
- So after updating with $May A \lor May B$, May A will not change the best alternatives

The Second Problem of Free Choice From Disjunction to Conjunction

Important Observation

After updating with $\mathsf{May}\,\mathsf{A}\lor\mathsf{May}\,\mathsf{B},\,\mathsf{May}\,\mathsf{A}$ will not change the best alternatives

- The same holds for May B
- But that is just to say:
 - May $A \lor May B \models May A$
 - May $A \lor May B \models May B$
 - May $A \lor May B \models May A \land May B$
- Yet in the modal free fragment, ∨ and ∧ behave exactly as the Boolean operators of classical semantics!
- **Proviso**: Stalnaker's observation treated as presupposition of ∨ and ⊨ is Strawsonian

```
William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012
```

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

The Semantics

And Strawsonian Consequence

Modal Semantics $R[May \phi] = \begin{cases} R \cup \{\langle c_R[\phi], c_R - c_R[\phi] \}\} & \text{if } \exists a \in Ch(R) : a[\phi] \neq \emptyset \\ \{\langle \emptyset, \emptyset \rangle\} & \text{otherwise} \end{cases}$ $R[Must \phi] = \begin{cases} R \cup \{\langle c_R[\phi], c_R - c_R[\phi] \}\} & \text{if } \forall a \in Ch(R) : a[\phi] = a \\ \{\langle \emptyset, \emptyset \rangle\} & \text{otherwise} \end{cases}$

Strawsonian Preferential Support, Consequence

- $R \models \phi \iff R[\phi]$ is defined & $Ch(R) = Ch(R[\phi])$
- $\phi_1, \ldots, \phi_n \models \psi \iff \forall R : R[\phi_1] \cdots [\phi_n] \models \psi$ if $R[\phi_1] \cdots [\phi_n][\psi]$ is defined

Free Choice and Two Views of Semantics Dynamic Preference Semantics References

The Semantics In Full Detail

Atomic Semantics

• Where
$$R = \{\langle a_0, a_1 \rangle, \dots, \langle a_n, a_{n+1} \rangle\}$$
:
 $R[\mathsf{A}] = \{\langle a_0[\mathsf{A}], a_1[\mathsf{A}] \rangle, \dots, \langle a_n[\mathsf{A}], a_{n+1}[\mathsf{A}] \rangle\}$

Connective Semantics

•
$$R[\phi \land \psi] = (R[\phi])[\psi]$$

= $\left(\begin{array}{c} R[\phi] \cup R[\psi] & \text{if } R[\phi] \neq \{\langle \emptyset, \emptyset \rangle\} \neq R[\psi] \end{array} \right)$

•
$$R[\phi \lor \psi] = \begin{cases} R[\phi] \lor R[\phi] : R[\phi] \lor R[\phi] : R[\phi] :$$

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

36/43

Free Choice and Two Views of Semantics Dynamic Preference Semantics References In Related Work Imperatives

- Free choice behavior of *might*?
 - Veltman's semantics + this implementation of Stalnaker's observation
- Why not just use Veltman's semantics for may?
 - *might* has no 'deontic reading'
 - Preference semantics captures deontic reading of may
 - Epistemic reading of *may*?
- In other work I use dynamic preference semantics to analyze imperatives
 - Having an analysis of deontic modals allows me to chart their connections
 - E.g. !A ⊫ May A

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

Conclusions

About Dynamic Semantics

Summary

- 1 Classical semantics is a fragment of dynamic semantics
- 2 But expanding into the resources afforded only by dynamic semantics is fruitful
 - Here: free choice
- **3** These provide something like an expressivist semantics
 - Truth is not the only useful evaluative concept
 - Consequence is not always about truth
- **4** But avoids typical pitfalls
 - How do you blend the truth-conditional and the non-truth-conditional? (Frege-Geach)
 - DS: truth-conditional behavior emerges for limited fragment from more basic semantic constraints

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

References

- BROMBERGER, S (1966). 'Questions.' The Journal of Philosophy, **63(20)**: 597-606. URL http://www.jstor.org/stable/2024253.
- D'ALEMBERT, JLR (1995). Preliminary Discourse to the Encyclopedia of Diderot. Chicago: University of Chicago Press. Originally published in 1751.
- GROENENDIJK, J (1999). 'The Logic of Interrogation: Classical Version.' In T MATTHEWS & D STROLOVITCH (eds.), *Proceedings from Semantics and Linguistic Theory IX*, 109–126. Ithaca, NY: Cornell University.
- HAMBLIN, CL (1958). 'Questions.' Australasian Journal of Philosophy, 36: 159–168.
- HANSSON, SO & GRÜNE-YANOFF, T (2009). 'Preferences.' In EN ZALTA (ed.), The Stanford Encyclopedia of Philosophy, spring 2009 edn. URL http://plato.stanford.edu/archives/spr2009/entries/preferences/.
- KAMP, H (1973). 'Free Choice Permission.' Proceedings of the Aristotelian Society, 74: 57-74. URL http://www.jstor.org/stable/4544849.
- LEWIS, DK (1979). 'Scorekeeping in a Language Game.' Journal of Philosophical Logic, 8(3): 339–359.
- NEWELL, A (1992). Unified Theories of Cognition. Cambridge, Massachusetts: Harvard University Press.

Thank you!

(Slides available at http://williamstarr.net/research)

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012

Free Choice and Two Views of Semantics Dynamic Preference Semantics Reference

References II

39/43

41/43

RAMSEY, FP (1931). 'Truth and Probability.' In R BRAITHWAITE (ed.), *The Foundations of Mathematics: Collected Papers of Frank P. Ramsey*, 156–198. London: Routledge and Kegan Paul.

ROBERTS, C (1996). 'Information Structure in Discourse: Towards an Integrated Formal Theory of Pragmatics.' *Tech. rep.*, Linguistics Department, The Ohio State University, Columbus, Ohio. OSU Working Papers in Linguistics, volume 49, Jae-Hak Yoon and Andreas Kathol, editors., URL http://www.ling.ohio-state.edu/~croberts/infostr.pdf.

- Ross, A (1941). 'Imperatives and Logic.' Theoria, **25(7)**: 53–71. Page references to reprint Ross (1944).
- Ross, A (1944). 'Imperatives and Logic.' *Philosophy of Science*, **11(1)**: 30-46. URL http://www.jstor.org/stable/184888.
- STALNAKER, RC (1975). 'Indicative Conditionals.' Philosophia, 5: 269–286. Page references to reprint in Stalnaker (1999).
- STALNAKER, RC (1978). 'Assertion.' In P COLE (ed.), Syntax and Semantics 9: Pragmatics, 315–332. New York: Academic Press. References to reprint in Stalnaker (1999).
- STALNAKER, RC (1999). Context and Content: Essays on Intentionality in Speech and Thought. Oxford: Oxford University Press.

$\label{eq:Free Choice and Two Views of Semantics Dynamic Preference Semantics \ References$

References III

VELTMAN, F (1996). 'Defaults in Update Semantics.' Journal of Philosophical Logic, 25(3): 221-261. URL http://www.pgrim.org/philosophersannual/xix/velt/index.htm.

William Starr | Expressing May and Must | Dynamic Semantics Session | ASL 2012